BACKGROUND: Antibiotic resistance is a global health crisis. The adage that "prevention is better than cure" is especially true regarding antibiotic resistance because the resistance appears and spreads much faster than the production of new antibiotics. Vaccination is an important strategy to fight infectious agents; however, this strategy has not attracted sufficient attention in antibiotic resistance prevention. New Delhi metallo-beta-lactamase (NDM) confers resistance to many beta-lactamases, including important carbapenems like imipenem. Our goal in this study is to use an immunoinformatics approach to develop a vaccine that can elicit strong and specific immune responses against NDMs that prevent the development of antibiotic-resistant bacteria. RESULTS: In this study, 2194 NDM sequences were aligned to obtain a conserved sequence. One continuous B cell epitope and three T cell CD4(+) epitopes were selected from NDMs conserved sequence. Epitope conservancy for B cell and HLA-DR, HLA-DQ, and HLA-DP epitopes was 100.00%, 99.82%, 99.41%, and 99.86%, respectively, and population coverage of MHC II epitopes for the world was 99.91%. Permutation of the four epitope fragments resulted in 24 different peptides, of which 6 peptides were selected after toxicity, allergenicity, and antigenicity assessment. After primary vaccine design, only one vaccine sequence with the highest similarity with discontinuous B cell epitope in NDMs was selected. The final vaccine can bind to various Toll-like receptors (TLRs). The prediction implied that the vaccine would be stable with a good half-life. An immune simulation performed by the C-IMMSIM server predicted that two doses of vaccine injection can induce a strong immune response to NDMs. Finally, the GC-Content of the vaccine was designed very similar to E. coli K12. CONCLUSIONS: In this study, immunoinformatics strategies were used to design a vaccine against different NDM variants that could produce an effective immune response against this antibiotic-resistant factor.
In silico vaccine design and epitope mapping of New Delhi metallo-beta-lactamase (NDM): an immunoinformatics approach.
阅读:4
作者:Fathollahi Matin, Fathollahi Anwar, Motamedi Hamid, Moradi Jale, Alvandi Amirhooshang, Abiri Ramin
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2021 | 起止号: | 2021 Sep 25; 22(1):458 |
| doi: | 10.1186/s12859-021-04378-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
