Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins-or "inks"-available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the ability of the ink to lead to a successful print, or the "printability," must be considered. Thus, this work examined the effect of filler composition/concentration, printing parameters, and lattice structure on the printability of new polysiloxane inks incorporating high concentrations (50-70 wt%) of metallic and ceramic fillers as well as emulsions. Results suggest that strut diameter and spacing ratio have the most influence on the printability of DIW materials and that the printability of silica- and metal-filled inks is more predictable than ceramic-filled inks. Additionally, higher filler loadings and SC geometries led to stiffer printed parts than lower loadings and FCT geometries, and metal-filled inks were more thermally stable than ceramic-filled inks. The findings in this work provide important insights into the tradeoffs associated with the development of unique and/or multifunctional DIW inks, printability, and the final material's performance.
Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
阅读:10
作者:Legett Shelbie A, Torres Xavier, Schmalzer Andrew M, Pacheco Adam, Stockdale John R, Talley Samantha, Robison Tom, Labouriau Andrea
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Nov 1; 14(21):4661 |
| doi: | 10.3390/polym14214661 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
