This study examined NADPH-d and nNOS expression in the SCG of hamsters. By light microscopy, numerous NADPH-d/NOS positive processes were widely distributed in the ganglion. Ultrastructurally, the NADPH-d reaction product was associated with the membranous organelles of neuronal soma, dendrites, myelinated fibres, small granular cells, and axon profiles bearing agranular vesicles. The NOS immunoreaction product, on the other hand, was localised in the cytoplasm of principal neurons and dendrites. Some of the NADPH-d/NOS labelled processes formed junctional contacts including synapses or zonulae adherentia. Compared with the neurons, the nonneuronal cells in the ganglion, namely, macrophages, satellite cells and endothelial cells were labelled by NADPH-d but devoid of nNOS immunoreaction product. The results suggest that the NADPH-d/NOS positive fibres in the SCG originate not only from the projecting fibres of the lateral horns of thoracic spinal cord, but also from the principal neurons and small granular cells; some may represent visceral afferent fibres. Electron microscopic morphometry has shown that about 67% of the principal neurons contain NADPH-d reaction product, and that the majority were small to medium sized neurons based on cross-sectional areas in image analysis. On the basis of the present morphological study, it is concluded NO is produced by some local neurons and possibly some nonneuronal cells in the SCG as well as some fibres of extrinsic origin. In this connection, NO may serve either as a neurotransmitter or neuromodulator.
Ultrastructural localisation of NADPH-d/nNOS expression in the superior cervical ganglion of the hamster.
阅读:3
作者:Tseng C Y, Lue J H, Chang H M, Wen C Y, Shieh J Y
| 期刊: | Journal of Anatomy | 影响因子: | 1.900 |
| 时间: | 2000 | 起止号: | 2000 Oct;197 Pt 3(Pt 3):461-75 |
| doi: | 10.1046/j.1469-7580.2000.19730461.x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
