A COVID-19 Infection Model Considering the Factors of Environmental Vectors and Re-Positives and Its Application to Data Fitting in Japan and Italy.

阅读:3
作者:Dong Shimeng, Lv Jinlong, Ma Wanbiao, Pradeep Boralahala Gamage Sampath Aruna
COVID-19, which broke out globally in 2019, is an infectious disease caused by a novel strain of coronavirus, and its spread is highly contagious and concealed. Environmental vectors play an important role in viral infection and transmission, which brings new difficulties and challenges to disease prevention and control. In this paper, a type of differential equation model is constructed according to the spreading functions and characteristics of exposed individuals and environmental vectors during the virus infection process. In the proposed model, five compartments were considered, namely, susceptible individuals, exposed individuals, infected individuals, recovered individuals, and environmental vectors (contaminated with free virus particles). In particular, the re-positive factor was taken into account (i.e., recovered individuals who have lost sufficient immune protection may still return to the exposed class). With the basic reproduction number R0 of the model, the global stability of the disease-free equilibrium and uniform persistence of the model were completely analyzed. Furthermore, sufficient conditions for the global stability of the endemic equilibrium of the model were also given. Finally, the effective predictability of the model was tested by fitting COVID-19 data from Japan and Italy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。