EM for regularized zero-inflated regression models with applications to postoperative morbidity after cardiac surgery in children.

阅读:5
作者:Wang Zhu, Ma Shuangge, Wang Ching-Yun, Zappitelli Michael, Devarajan Prasad, Parikh Chirag
This paper proposes a new statistical approach for predicting postoperative morbidity such as intensive care unit length of stay and number of complications after cardiac surgery in children. In a recent multi-center study sponsored by the National Institutes of Health, 311 children undergoing cardiac surgery were enrolled. Morbidity data are count data in which the observations take only nonnegative integer values. Often, the number of zeros in the sample cannot be accommodated properly by a simple model, thus requiring a more complex model such as the zero-inflated Poisson regression model. We are interested in identifying important risk factors for postoperative morbidity among many candidate predictors. There is only limited methodological work on variable selection for the zero-inflated regression models. In this paper, we consider regularized zero-inflated Poisson models through penalized likelihood function and develop a new expectation-maximization algorithm for numerical optimization. Simulation studies show that the proposed method has better performance than some competing methods. Using the proposed methods, we analyzed the postoperative morbidity, which improved the model fitting and identified important clinical and biomarker risk factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。