Analyses of longitudinal data with non-linear mixed-effects models (NLMEM) are typically associated with high power, but sometimes at the cost of inflated type I error. Approaches to overcome this problem were published recently, such as model-averaging across drug models (MAD), individual model-averaging (IMA), and combined Likelihood Ratio Test (cLRT). This work aimed to assess seven NLMEM approaches in the same framework: treatment effect assessment in balanced two-armed designs using real natural history data with or without the addition of simulated treatment effect. The approaches are MAD, IMA, cLRT, standard model selection (STDs), structural similarity selection (SSs), randomized cLRT (rcLRT), and model-averaging across placebo and drug models (MAPD). The assessment included type I error, using Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) scores from 817 untreated patients and power and accuracy in the treatment effect estimates after the addition of simulated treatment effects. The model selection and averaging among a set of pre-selected candidate models were driven by the Akaike information criteria (AIC). The type I error rate was controlled only for IMA and rcLRT; the inflation observed otherwise was explained by the placebo model misspecification and selection bias. Both IMA and rcLRT had reasonable power and accuracy except under a low typical treatment effect.
Comparison of Seven Non-Linear Mixed Effect Model-Based Approaches to Test for Treatment Effect.
阅读:3
作者:Chasseloup Estelle, Karlsson Mats O
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2023 | 起止号: | 2023 Jan 30; 15(2):460 |
| doi: | 10.3390/pharmaceutics15020460 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
