Deep vein thrombosis is a major source of morbidity and mortality worldwide. Catheter-directed thrombolytics are the frontline approach for vessel recanalization, though fibrinolytic efficacy is limited for stiff, chronic thrombi. Although thrombin has been used in preclinical models to induce thrombosis, the effect on lytic susceptibility and clot stiffness is unknown. The goal of this study was to explore the effect of bovine thrombin concentration and incubation time on lytic susceptibility and stiffness of porcine whole blood clots in vitro. Porcine whole blood was allowed to coagulate at 37°C in glass pipets primed with 2.5 or 15 U/mL thrombin for 15 to 120 min. Lytic susceptibility to recombinant tissue plasminogen activator (rt-PA, alteplase) over a range of concentrations (3.15-107.00 µg/mL) was evaluated using percentage clot mass loss. The Young's moduli and degrees of retraction of the clots were estimated using ultrasound-based single-track-location shear wave elasticity and B-mode imaging, respectively. Percentage mass loss decreased and clot stiffness increased with the incubation period. Clots formed with 15 U/mL and incubated for 2 h exhibited properties similar to those of highly retracted clots: Young's modulus of 2.39 ± 0.36 kPa and percentage mass loss of 8.69 ± 2.72% when exposed to 3.15 µg/mL rt-PA. The histological differences between thrombin-induced porcine whole blood clots in vitro and thrombi in vivo are described.
Effect of Thrombin and Incubation Time on Porcine Whole Blood Clot Elasticity and Recombinant Tissue Plasminogen Activator Susceptibility.
阅读:5
作者:Zemzemi Chadi, Phillips Matthew, Vela Deborah C, Hilvert Nicole A, Racadio John M, Bader Kenneth B, Haworth Kevin J, Holland Christy K
| 期刊: | Ultrasound in Medicine and Biology | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Aug;48(8):1567-1578 |
| doi: | 10.1016/j.ultrasmedbio.2022.04.003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
