Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO(2) NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry.

阅读:3
作者:Sun Yuqi, Zhang Runze, Sun Chunyi, Liu Zhipeng, Zhang Jian, Liang Shuang, Wang Xia
Mixtures of silica nanoparticles (SiO(2) NPs) and natural organic matter (NOM) are ubiquitous in natural aquatic environments and pose risks to organisms. Ultrafiltration (UF) membranes can effectively remove SiO(2) NP-NOM mixtures. However, the corresponding membrane fouling mechanisms, particularly under different solution conditions, have not yet been studied. In this work, the effect of solution chemistry on polyethersulfone (PES) UF membrane fouling caused by a SiO(2) NP-NOM mixture was investigated at different pH levels, ionic strengths, and calcium concentrations. The corresponding membrane fouling mechanisms, i.e., Lifshitz-van der Waals (LW), electrostatic (EL), and acid-base (AB) interactions, were quantitatively evaluated using the extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. It was found that the extent of membrane fouling increased with decreasing pH, increasing ionic strength, and increasing calcium concentration. The attractive AB interaction between the clean/fouled membrane and foulant was the major fouling mechanism in both the initial adhesion and later cohesion stages, while the attractive LW and repulsive EL interactions were less important. The change of fouling potential with solution chemistry was negatively correlated with the calculated interaction energy, indicating that the UF membrane fouling behavior under different solution conditions can be effectively explained and predicted using the xDLVO theory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。