Bloom's syndrome (BS) is a rare genetic disorder characterized by a broad range of symptoms and, most importantly, a predisposition to many types of cancers. Cells derived from patients with BS exhibit an elevated rate of somatic recombination and hypermutability, supporting a role for bleomycin (BLM) in the maintenance of genomic integrity. BLM is thought to participate in several DNA transactions, the failure of which could give raise to genomic instability, and to interact with many proteins involved in replication, recombination, and repair. In this study, we show that BLM function is specifically required to properly relocalize the RAD50/MRE11/NBS1 (RMN) complex at sites of replication arrest, but is not essential in the activation of BRCA1 either after stalled replication forks or gamma-rays. We also provide evidence that BLM is phosphorylated after replication arrest in an Ataxia and RAD3-related protein (ATR)-dependent manner and that phosphorylation is not required for subnuclear relocalization. Therefore, in ATR dominant negative mutant cells, the assembly of the RMN complex in nuclear foci after replication blockage is almost completely abolished. Together, these results suggest a relationship between BLM, ATR, and the RMN complex in the response to replication arrest, proposing a role for BLM protein and RMN complex in the resolution of stalled replication forks.
Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest.
阅读:5
作者:Franchitto Annapaola, Pichierri Pietro
| 期刊: | Journal of Cell Biology | 影响因子: | 6.400 |
| 时间: | 2002 | 起止号: | 2002 Apr 1; 157(1):19-30 |
| doi: | 10.1083/jcb.200110009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
