OBJECTIVE: The current study was aimed at the investigation of differences in response to photoinactivation between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) isolates. Moreover, we aimed to elucidate if the observed variation resulted from antimicrobial resistance mechanisms and strains' susceptibility to antibiotic therapy. BACKGROUND DATA: Because of the emergence of multidrug resistance, the development of alternative antimicrobial strategies seems to be required. The concept of photodynamic inactivation (PDI) involves cell exposure to appropriate wavelength light that leads to the excitation of photosensitizer molecules, resulting in the production of reactive oxygen species responsible for cell inactivation and death. Recently, we have demonstrated a strain-dependent response of S. aureus to photoinactivation, and observed elevated resistance to PDI among MRSA strains. Nevertheless, the mechanism underlying this phenomenon remains unexplained. METHODS: S. aureus response to protoporphyrin IX (PPIX)-mediated photoinactivation was studied for 424 MRSA/MSSA isolates. VITEK 2 Advanced Expert System was used to detect antimicrobial resistance mechanisms and strains' susceptibility to antibiotictherapy. RESULTS: Data obtained demonstrated that MRSA are significantly more resistant to photoinactivation than MSSA strains; however, the difference observed did not result from antimicrobial susceptibility or resistance mechanisms. Furthermore, regardless of the strains' origin, a similar effectiveness of PDI could be achieved. Moreover, it was determined that the ability to form biofilms in vitro, and the presence of mec element, does not explain the observed differences between MRSA and MSSA strains. CONCLUSIONS: PDI could be highly effective against multidrug resistant pathogens as well as their naïve counterparts. Nevertheless, regardless of the antimicrobial resistance mechanism, the difference in response to PDI between MRSA and MSSA exists.
Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains.
阅读:5
作者:Grinholc Mariusz, Rapacka-Zdonczyk Aleksandra, Rybak Bartosz, Szabados Florian, Bielawski Krzysztof P
| 期刊: | Photomedicine and Laser Surgery | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Mar;32(3):121-9 |
| doi: | 10.1089/pho.2013.3663 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
