Large-scale stationary hydrogen storage via liquid organic hydrogen carriers

通过液态有机氢载体进行大规模固定式储氢

阅读:11
作者:Zainul Abdin, Chunguang Tang, Yun Liu, Kylie Catchpole

Abstract

Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。