Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately quantify AMP activity against specific bacteria, making the identification of highly potent AMPs a challenge. Here, we present a deep learning method, BERT-AmPEP60, based on the fine-tuned Bidirectional Encoder Representations from Transformers (BERT) architecture to extract embedding features from input sequences. Using the transfer learning strategy, we built regression models to predict the minimum inhibitory concentration (MIC) of peptides for Escherichia coli (EC) and Staphylococcus aureus (SA). In five independent experiments with 10% leave-out sequences as the test sets, the optimal EC and SA models outperformed the state-of-the-art regression method and traditional machine learning methods, achieving an average mean squared error of 0.2664 and 0.3032 (log μM), respectively. They also showed a Pearson correlation coefficient of 0.7955 and 0.7530, and a Kendall correlation coefficient of 0.5797 and 0.5222, respectively. Our models outperformed existing deep learning and machine learning methods that rely on conventional sequence features. This work underscores the effectiveness of utilizing BERT with transfer learning for training quantitative AMP prediction models specific for different bacterial species. The web server of BERT-AmPEP60 can be found at https://app.cbbio.online/ampep/home. To facilitate development, the program source codes are available at https://github.com/janecai0714/AMP_regression_EC_SA.
BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for Escherichia coli and Staphylococcus aureus.
阅读:5
作者:Cai Jianxiu, Yan Jielu, Un Chonwai, Wang Yapeng, Campbell-Valois François-Xavier, Siu Shirley W I
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 65(7):3186-3202 |
| doi: | 10.1021/acs.jcim.4c01749 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
