BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for Escherichia coli and Staphylococcus aureus.

阅读:15
作者:Cai Jianxiu, Yan Jielu, Un Chonwai, Wang Yapeng, Campbell-Valois François-Xavier, Siu Shirley W I
Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately quantify AMP activity against specific bacteria, making the identification of highly potent AMPs a challenge. Here, we present a deep learning method, BERT-AmPEP60, based on the fine-tuned Bidirectional Encoder Representations from Transformers (BERT) architecture to extract embedding features from input sequences. Using the transfer learning strategy, we built regression models to predict the minimum inhibitory concentration (MIC) of peptides for Escherichia coli (EC) and Staphylococcus aureus (SA). In five independent experiments with 10% leave-out sequences as the test sets, the optimal EC and SA models outperformed the state-of-the-art regression method and traditional machine learning methods, achieving an average mean squared error of 0.2664 and 0.3032 (log μM), respectively. They also showed a Pearson correlation coefficient of 0.7955 and 0.7530, and a Kendall correlation coefficient of 0.5797 and 0.5222, respectively. Our models outperformed existing deep learning and machine learning methods that rely on conventional sequence features. This work underscores the effectiveness of utilizing BERT with transfer learning for training quantitative AMP prediction models specific for different bacterial species. The web server of BERT-AmPEP60 can be found at https://app.cbbio.online/ampep/home. To facilitate development, the program source codes are available at https://github.com/janecai0714/AMP_regression_EC_SA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。