Frontal cortex-basal ganglia circuitry supports behavioral switching when a change in outcome information is used to adapt response patterns. Less is known about whether specific frontal cortex-basal ganglia circuitry supports behavioral switching when cues signal that a change in response patterns should occur. The present experiments investigated whether the prelimbic cortex and subthalamic nucleus in male Long-Evans rats supports cue-guided switching in a conditional discrimination test. Rats learned in a cross-maze that a start arm cue (black or white) signaled which of two maze arms to enter for a food reward. The cue was switched every 3-6 trials. Baclofen and muscimol infused into the prelimbic cortex significantly impaired performance by increasing switch trial errors, as well as trials immediately following a switch trial (perseveration) and after initially making a correct switch (maintenance error). NMDA receptor blockade in the subthalamic nucleus significantly impaired performance by increasing switch errors and perseveration. Contralateral disconnection of these areas significantly reduced conditional discrimination performance by increasing switch and perseverative errors. These findings suggest that the prelimbic area and subthalamic nucleus support the use of cue information to facilitate an initial switch away from a previously relevant response pattern.
The prelimbic cortex and subthalamic nucleus contribute to cue-guided behavioral switching.
阅读:3
作者:Baker Phillip M, Ragozzino Michael E
| 期刊: | Neurobiology of Learning and Memory | 影响因子: | 1.800 |
| 时间: | 2014 | 起止号: | 2014 Jan;107:65-78 |
| doi: | 10.1016/j.nlm.2013.11.006 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
