Human periodontal ligament stem cells on calcium phosphate scaffold delivering platelet lysate to enhance bone regeneration.

阅读:2
作者:Zhao Zeqing, Liu Jin, Weir Michael D, Zhang Ning, Zhang Li, Xie Xianju, Zhang Charles, Zhang Ke, Bai Yuxing, Xu Hockin H K
Human periodontal ligament stem cells (hPDLSCs) are promising for tissue engineering applications but have received relatively little attention. Human platelet lysate (HPL) contains a cocktail of growth factors. To date, there has been no report on hPDLSC seeding on scaffolds loaded with HPL. The objectives of this study were to develop a calcium phosphate cement (CPC)-chitosan scaffold loaded with HPL and investigate their effects on hPDLSC viability, osteogenic differentiation and bone mineral synthesis for the first time. hPDLSCs were harvested from extracted human teeth. Scaffolds were formed by mixing CPC powder with a chitosan solution containing HPL. Four groups were tested: CPC-chitosan + 0% HPL (control); CPC-chitosan + 2.66% HPL; CPC-chitosan + 5.31% HPL; CPC-chitosan + 10.63% HPL. Scanning electron microscopy, live/dead staining, CCK-8, qRT-PCR, alkaline phosphatase and bone minerals assay were applied for hPDLSCs on scaffolds. hPDLSCs attached well on CPC-chitosan scaffold. Adding 10.63% HPL into CPC increased cell proliferation and viability (p < 0.05). ALP gene expression of CPC-chitosan + 10.63% HPL was 7-fold that of 0% HPL at 14 days. Runx2, OSX and Coll1 of CPC-chitosan + 10.63% HPL was 2-3 folds those at 0% HPL (p < 0.05). ALP activity of CPC-chitosan + 10.63% HPL was 2-fold that at 0% HPL (p < 0.05). Bone minerals synthesized by hPDLSCs for CPC-chitosan + 10.63% HPL was 3-fold that at 0% HPL (p < 0.05). This study showed that CPC-chitosan scaffold was a promising carrier for HPL delivery, and HPL in CPC exerted excellent promoting effects on hPDLSCs for bone tissue engineering for the first time. The novel hPDLSC-CPC-chitosan-HPL construct has great potential for orthopedic, dental and maxillofacial regenerative applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。