BACKGROUND: Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. The authors used rhBMP2 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres placed in a rabbit cranial defect model to test whether low-dose, sustained delivery can effectively induce bone regeneration. METHODS: The rhBMP2 was encapsulated in 15% PLGA using a double-emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10 mm) were created in the calvaria of New Zealand white rabbits (5 to 7 months of age, male and female) and filled with a collagen scaffold containing either (1) no implant, (2) collagen scaffold only, (3) PLGA-rhBMP2 (0.1 μg per implant), or (4) free rhBMP2 (0.1 μg per implant). After 6 weeks, the rabbits were killed and defects were analyzed by micro-computed tomography, histology, and finite element analysis. RESULTS: The rhBMP2 delivered by means of bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by micro-computed tomography (p=0.025 and p=0.025). Finite element analysis indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. CONCLUSIONS: Sustained delivery by means of PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reducing the risk for recently reported rhBMP2-related adverse effects.
Sustained delivery of rhBMP-2 by means of poly(lactic-co-glycolic acid) microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis.
阅读:4
作者:Wink Jason D, Gerety Patrick A, Sherif Rami D, Lim Youngshin, Clarke Nadya A, Rajapakse Chamith S, Nah Hyun-Duck, Taylor Jesse A
| 期刊: | Plastic and Reconstructive Surgery | 影响因子: | 3.400 |
| 时间: | 2014 | 起止号: | 2014 Jul;134(1):51-59 |
| doi: | 10.1097/PRS.0000000000000287 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
