The persistence of beneficial microorganisms in the rhizosphere or surrounding soil following their application is a prerequisite for the effective interaction with the plant or indigenous microbial communities in the respective habitats. The goal of the study was to analyze the establishment and persistence of the applied beneficial Trichoderma harzianum (OMG16) strain in the maize root-associated soil depending on agricultural practice (soil management practice, N-fertilizer intensity) in a field experiment. A rapid identification of the inoculated strain OMG16 is essential for its monitoring. We used a culture-based approach coupled to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis for the rapid identification of the inoculated Trichoderma strain as part of the beneficial microbe consortium (BMc). We isolated 428 fungal isolates from eight treatments of the field experiment. Forty eight percent of the isolated fungi equivalent to 205 fungal isolates were identified as Trichoderma, of which 87% (=179 isolates) were obtained from the fields inoculated with BMc. Gene sequence analysis showed a high similarity of the MALDI-TOF MS-identified Trichoderma, with that of the inoculated Trichoderma harzianum OMG16 confirming the re-isolation of the added beneficial fungus. This study highlighted the use of MALDI-TOF MS analysis as a quick, cost-effective detection and efficient monitoring tool for microbial-based bioinoculants in the field.
Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS.
阅读:5
作者:Dela Cruz Thomas Edison E, Behr Jan Helge, Geistlinger Joerg, Grosch Rita, Witzel Katja
| 期刊: | Microorganisms | 影响因子: | 4.200 |
| 时间: | 2023 | 起止号: | 2023 Jun 25; 11(7):1655 |
| doi: | 10.3390/microorganisms11071655 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
