Human serum albumin (HSA) efficiently transports drugs in vivo: most are organic. Therefore, it is important to delineate the binding of small molecules to HSA. Here, for the first time, we show that HSA binding depends not only on the identity of the d(8) metal ion, Ni(II) or Pd(II), of their complexes with bis(pyrrole-imine), H(2)PrPyrr, but on the pH level as well. Fluorescence quenching data for native and probe-bound HSA showed that sites close to Trp-214 (subdomain IIA) are targeted. The affinity constants, Ka, ranged from ~3.5 à 10(3) M(-1) to ~1 à 10(6) M(-1) at 37 °C, following the order Pd(PrPyrr) > Ni(PrPyrr) at pH levels of 4 and 7; but Ni(PrPyrr) > Pd(PrPyrr) at a pH level of 9. Ligand uptake is enthalpically driven, dependent mainly on London dispersion forces. The induced CD spectra for the protein-bound ligands could be simulated by hybrid QM:MM TD-DFT methods, allowing us to delineate the binding site of the ligands and to prove that the metal chelates neither decompose nor demetallate after uptake by HSA. The transport and delivery of the metal chelates by HSA in vivo is therefore feasible.
Spectroscopic and Computational pH Study of Ni(II) and Pd(II) Pyrrole-Imine Chelates with Human Serum Albumin.
阅读:4
作者:Sookai Sheldon, Bracken Matthew Lee, Nowakowska Monika
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2023 | 起止号: | 2023 Nov 7; 28(22):7466 |
| doi: | 10.3390/molecules28227466 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
