Despite the vast number of seizure detection publications there are no validated open-source tools for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient, error prone, and heavily biased. Here we developed an open-source software called SeizyML that uses sensitive machine learning models coupled with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning models (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes and stochastic gradient descent models achieved the highest precision and f1 scores, while also detecting all seizures in our mouse dataset and only require a small amount of data to train the model and achieve good performance. Further, we demonstrate the utility of this approach to detect electrographic seizures in a human EEG dataset. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.
Semi-automated seizure detection using interpretable machine learning models.
阅读:9
作者:Antonoudiou Pantelis, Basu Trina, Maguire Jamie
| 期刊: | Res Sq | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 May 30 |
| doi: | 10.21203/rs.3.rs-4361048/v1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
