In this paper, a thorough investigation is presented on the static and dynamic behaviors of a short-span cable-stayed bridge (CSB) incorporating steel and carbon fiber reinforced polymer (CFRP) hybrid cables. The study focuses on the world's largest span and China's first highway, CFRP CSB. The performance of the CSB was compared using numerical simulations under four different cable patterns: steel cables, CFRP cables, and steel, and two types of hybrid cables with different structural arrangements. The results indicate that the use of the use of CFRP cables in the long cable region in the short-span CSB project investigated in this study offers improved performance in terms of stability, seismic response, and reduced displacements. In comparison to CFRP cables, hybrid cables have demonstrated a reduction of 12% in the maximum vertical displacement of the main girder. On the other hand, the hybrid cables result in reduced maximum internal forces and longitudinal and lateral displacements of the main girders and towers compared to steel cables. The difference in the arrangement of CFRP cables in the long cable region or short cable region is not obvious under dead loads, but significant differences still exist between the CFRP cable bridges in the short cable region and the long cable region in terms of live load effects, temperature effects, and dynamic characteristics.
Numerical Investigation on the Structural Behavior of a Short-Span Cable-Stayed Bridge with Steel and CFRP Hybrid Cables.
阅读:4
作者:Lu Chunling, Wang Xiangxiang, Ning Yuwen, Wen Kang, Wang Qiang
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Apr 26; 17(9):2032 |
| doi: | 10.3390/ma17092032 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
