Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification

泛素通过mTOR信号和溶酶体酸化调节自噬通量

阅读:7
作者:Mümine Şentürk, Guang Lin, Zhongyuan Zuo, Dongxue Mao, Emma Watson, Antonios G Mikos, Hugo J Bellen

Abstract

Although the aetiology of amyotrophic lateral sclerosis (ALS) remains poorly understood, impaired proteostasis is a common feature of different forms of ALS. Mutations in genes encoding ubiquilins, UBQLN2 and UBQLN4, cause familial ALS. The role of ubiquilins in proteasomal degradation is well established, but their role in autophagy-lysosomal clearance is poorly defined. Here, we describe a crosstalk between endoplasmic reticulum stress, mTOR signalling and autophagic flux in Drosophila and mammalian cells lacking ubiquilins. We found that loss of ubiquilins leads to endoplasmic reticulum stress, impairs mTORC1 activity, promotes autophagy and causes the demise of neurons. We show that ubiquilin mutants display defective autophagic flux due to reduced lysosome acidification. Ubiquilins are required to maintain proper levels of the V0a/V100 subunit of the vacuolar H+-ATPase and lysosomal pH. Feeding flies acidic nanoparticles alleviates defective autophagic flux in ubiquilin mutants. Hence, our studies reveal a conserved role for ubiquilins as regulators of autophagy by controlling vacuolar H+-ATPase activity and mTOR signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。