Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm(2). Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.
Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys.
阅读:3
作者:Cabral-Miramontes José, Almeraya-Calderón Facundo, Méndez-RamÃrez Ce Tochtli, Flores-De Los Rios Juan Pablo, Maldonado-Bandala Erick, Baltazar-Zamora Miguel Ãngel, Nieves-Mendoza Demetrio, Lara-Banda MarÃa, Pedraza-Basulto Gabriela, Gaona-Tiburcio Citlalli
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Aug 29; 17(17):4285 |
| doi: | 10.3390/ma17174285 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
