This study aimed at determining how the degradation of cereal non-starch polysaccharides (NSP) by dietary enzymes during feed digestion can influence nutrient digestibility and NSP fermentability in broilers. Ninety-six one-day-old male broilers were assigned to 4 different treatments: control and enzyme-supplemented wheat-based (WC, WE) or maize-based (MC, ME) treatments. Enzyme supplementation with endo-xylanase and endo-glucanase occurred from day 20 onwards. On day 28, digesta samples were collected. Nutrient digestibility, NSP recovery, oligosaccharide profile, and short-chain fatty acids (SCFA) content were determined. Enzyme supplementation in WE resulted in a higher starch (3%; p = 0.004) and protein (5%; p = 0.002) digestion in the ileum compared to WC. Xylanase activity in WE led to in situ formations of arabinoxylan-oligosaccharides consisting of 5 to 26 pentose units in the ileum. This coincided with decreased arabinose (p = 0.059) and xylose (p = 0.036) amounts in the ceca and higher acetate (p = 0.014) and butyrate (p = 0.044) formation in WE compared to WC. Conversely, complete total tract recovery of arabinoxylan in MC and ME suggested poor maize NSP fermentability. Overall, enzyme action improved nutrient digestibility and arabinoxylan fermentability in the wheat-based diet. The lower response of the maize-based diet to enzyme treatment may be related to the recalcitrance of maize arabinoxylan as well as to the high nutritive value of maize.
Impact of Xylanase and Glucanase on Oligosaccharide Formation, Carbohydrate Fermentation Patterns, and Nutrient Utilization in the Gastrointestinal Tract of Broilers.
阅读:3
作者:Kouzounis Dimitrios, Hageman Jos A, Soares Natalia, Michiels Joris, Schols Henk A
| 期刊: | Animals | 影响因子: | 2.700 |
| 时间: | 2021 | 起止号: | 2021 Apr 29; 11(5):1285 |
| doi: | 10.3390/ani11051285 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
