Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico.

阅读:3
作者:Schiff Max L, Reyes Alex D
We use a combination of in vitro whole cell recordings and computer simulations to characterize the cellular and synaptic properties that contribute to processing of auditory stimuli. Using a mouse thalamocortical slice preparation, we record the intrinsic membrane properties and synaptic properties of layer 3/4 regular-spiking (RS) pyramidal neurons and fast-spiking (FS) interneurons in primary auditory cortex (AI). We find that postsynaptic potentials (PSPs) evoked in FS cells are significantly larger and depress more than those evoked in RS cells after thalamic stimulation. We use these data to construct a simple computational model of the auditory thalamocortical circuit and find that the differences between FS and RS cells observed in vitro generate model behavior similar to that observed in vivo. We examine how feedforward inhibition and synaptic depression affect cortical responses to time-varying inputs that mimic sinusoidal amplitude-modulated tones. In the model, the balance of cortical inhibition and thalamic excitation evolves in a manner that depends on modulation frequency (MF) of the stimulus and determines cortical response tuning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。