Genome-wide association studies (GWAS) have identified >30 loci with multiple common noncoding variants explaining interindividual electrocardiographic QT interval (QTi) variation. Of the many types of noncoding functional elements, here we sought to identify transcriptional enhancers with sequence variation and their cognate transcription factors (TFs) that alter the expression of proximal cardiac genes to affect QTi variation. We used massively parallel reporter assays (MPRA) in mouse cardiomyocyte HL-1 cells to screen for functional enhancer variants among 1,018 QTi-associated GWAS variants that overlap candidate cardiac enhancers across 31 loci. We identified 445 GWAS variant-containing enhancers of which 79 showed significant allelic difference in enhancer activity across 21 GWAS loci, with multiple enhancer variants per locus. Of these, we predicted differential binding by cardiac TFs, including AP-1, ATF-1, GATA2, MEF2, NKX2.5, SRF and TBX5 which are known to play key roles in development and homeostasis, at 49 enhancer variants. Finally, we used expression quantitative trait locus mapping and predicted promoter-enhancer contacts to identify 14 candidate target genes through analyses of 36 enhancer variants at 16 loci. This study provides strong evidence for 14 cardiac genes, 10 of them novel, impacting on QTi variation, beyond explaining observed genetic associations.
Massively parallel reporter assays identify functional enhancer variants at QT interval GWAS loci.
阅读:2
作者:Lee Dongwon, Gunamalai Lavanya, Kannan Jeerthi, Vickery Kyla, Yaacov Or, Onuchic-Whitford Ana C, Chakravarti Aravinda, Kapoor Ashish
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 12 |
| doi: | 10.1101/2025.03.11.642686 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
