Optimization of monomethoxy poly(ethylene glycol) grafting on Langerhans islets capsule using response surface method.

阅读:5
作者:Aghajani-Lazarjani Hamideh, Vasheghani-Farahani Ebrahim, Hashemi-Najafabadi Sameereh, Shojaosadati Seyed Abbas, Zahediasl Saleh, Tiraihi Taki, Atyabi Fatemeh
Langerhans islet transplantation is a much less invasive approach compared with the pancreas transplantation to 'cure' diabetes. However, destruction of transplanted islets by the immune system is an impediment for a successful treatment. Chemical grafting of monomethoxy poly(ethylene glycol) onto pancreatic islet capsule is a novel approach in islet immunoisolation. The aim of this study was to determine an optimized condition for grafting of monomethoxy poly(ethylene glycol) succinimidyl propionate (mPEG-SPA) on islets capsule. Independent variables such as reaction time, the percentage of longer mPEG in the mixture, and polymer concentration were optimized using a three-factor, three-level Box-Behnken statistical design. The dependent variable was IL-2 (interleukin-2) secretion of lymphocytes co-cultured with PEGylated or uncoated control islets for 7 days co-culturing. A mathematical relationship is obtained which explained the main and quadratic effects and the interaction of factors which affected IL-2 secretion. Response surface methodology predicted the optimized values of reaction time, the percentage of longer mPEG in the mixture, and polymer concentration of 60 min to be 63.7% mPEG(10) and 22 mg/mL, respectively, for the minimization of the secreted IL-2 as response. Islets which were PEGylated at this condition were transplanted to diabetic rats. The modified islets could survive for 24 days without the aid of any immunosuppressive drugs and it is the longest survival date reported so far. However, free islets (unmodified islets as control) are completely destroyed within 7 days. These results strongly suggest that this new protocol provides an effective clinical means of decreasing transplanted islet immunogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。