Pyrimidine sufficiency is required for Sae two-component system signaling in Staphylococcus aureus.

阅读:18
作者:DiMaggio Dennis A Jr, Yeo Won-Sik, Brinsmade Shaun R
Nucleotide metabolism in pathogens is essential for their virulence, supporting their growth, survival, and immune evasion during infection. Virulence in Staphylococcus aureus is driven by the production of virulence factors that facilitate nutrient acquisition and promote immune evasion and subversion. One key virulence regulatory system is the Sae two-component system, which upregulates the production of various virulence factors. The sensor histidine kinase SaeS, a member of the intramembrane family of histidine kinases (HKs), lacks a signal-binding domain, leaving the mechanisms by which these HKs sense signals and regulate gene expression unclear. We report that pyrimidine sufficiency is essential for maintaining Sae activity. Disruption of genes involved in pyrimidine biosynthesis reduces Sae-dependent promoter activity under pyrimidine-limited conditions. Phos-tag electrophoresis confirmed that pyrimidine limitation impacts SaeS kinase activity directly. The effect of pyrimidine limitation on SaeS was abrogated in a strain producing only the catalytic domain, suggesting that pyrimidines regulate SaeS activity at the membrane. Additionally, pyrimidine limitation results in cell envelope defects, specifically increased lipoteichoic acids, and incorporation of free fatty acids into the membrane. While both cell envelope aberrations are detrimental to Sae activity, we found that removal of the accumulated free fatty acids restored Sae activity. Our study highlights the interplay between nucleotide metabolism and membrane integrity in regulating virulence factor expression through signal transduction systems in pathogens.IMPORTANCEVirulence is often correlated with nutrient depletion, but our understanding of this coordination is incomplete. In Staphylococcus aureus, the Sae two-component system is a major regulator of virulence factor production and secretion, but as the sensor histidine kinase SaeS lacks an obvious domain to perceive its inducing signal, basic questions surrounding how the kinase is triggered persist. Here, we aimed to investigate the mechanism by which pyrimidines act to promote the activity of the SaeS kinase in S. aureus and further expand on the importance of the roles of pyrimidines in regulating envelope biogenesis. Understanding this intersection between nucleotide metabolism and virulence regulation opens up the possibility for the development of targeted anti-virulence strategies against S. aureus infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。