An innovative theoretical method to describe the microscopic dynamics of chemi-ionization reactions as prototype oxidation processes driven by selective electronic rearrangements has been recently published. It was developed and applied to reactions of Ne* atoms excited in their metastable (3)P(J) state, and here, its physical background is extensively described in order to provide a clear description of the microscopic phenomenon underlying the chemical reactivity of the oxidative processes under study. It overcomes theoretical models previously proposed and reproduces experimental results obtained in different laboratories. Two basic reaction mechanisms have been identified: (i) at low collision energies, a weakly bounded transition state is formed which spontaneously ionizes through a radiative physical mechanism (photoionization); (ii) in the hyperthermal regime, an elementary oxidation process occurs. In this paper, the selectivity of the electronic rearrangements triggering the two mechanisms has been related to the angular momentum couplings by Hund's cases, casting further light on fundamental aspects of the reaction stereodynamics of general interest. The obtained results allow peculiar characteristics and differences of the terrestrial oxidizing chemistry compared to that of astrochemical environments to be highlighted.
Electronic Rearrangements and Angular Momentum Couplings in Quantum State-to-State Channels of Prototype Oxidation Processes.
阅读:10
作者:Falcinelli Stefano, Vecchiocattivi Franco, Pirani Fernando
| 期刊: | Journal of Physical Chemistry A | 影响因子: | 2.800 |
| 时间: | 2021 | 起止号: | 2021 Feb 25; 125(7):1461-1467 |
| doi: | 10.1021/acs.jpca.0c09701 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
