In vitro fermentation test bed for evaluation of engineered probiotics in polymicrobial communities.

阅读:5
作者:Arcidiacono Steven, Breedon Amy M Ehrenworth, Goodson Michael S, Doherty Laurel A, Lyon Wanda, Jimenez Grace, Pantoja-Feliciano Ida G, Soares Jason W
In vitro fermentation systems offer significant opportunity for deconvoluting complex metabolic dynamics within polymicrobial communities, particularly those associated with the human gut microbiome. In vitro gut models have broad experimental capacity allowing rapid evaluation of multiple parameters, generating knowledge to inform design of subsequent in vivo studies. Here, our method describes an in vitro fermentation test bed to provide a physiologically-relevant assessment of engineered probiotics circuit design functions. Typically, engineered probiotics are evaluated under pristine, mono- or co-culture conditions and transitioned directly into animal or human studies, commonly resulting in a loss of desired function when introduced to complex gut communities. Our method encompasses a systematic workflow entailing fermentation, molecular and functional characterization, and statistical analyses to validate an engineered probiotic's persistence, plasmid stability and reporter response. To demonstrate the workflow, simplified polymicrobial communities of human gut microbial commensals were utilized to investigate the probiotic Escherichia coli Nissle 1917 engineered to produce a fluorescent reporter protein. Commensals were assembled with increasing complexity to produce a mock community based on nutrient utilization. The method assesses engineered probiotic persistence in a competitive growth environment, reporter production and function, effect of engineering on organism growth and influence on commensal composition. The in vitro test bed represents a new element within the Design-Build-Test-Learn paradigm, providing physiologically-relevant feedback for circuit re-design and experimental validation for transition of engineered probiotics to higher fidelity animal or human studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。