Fluorescence guidance improves the accuracy of radiological imaging-guided surgical navigation.

阅读:6
作者:Henderson Eric R, Hebert Kendra A, Werth Paul M, Streeter Samuel S, Rosenthal Eben L, Paulsen Keith D, Pogue Brian W, Samkoe Kimberley S
BACKGROUND: Imaging-based navigation technologies require static referencing between the target anatomy and the optical sensors. Imaging-based navigation is therefore well suited to operations involving bony anatomy; however, these technologies have not translated to soft-tissue surgery. We sought to determine if fluorescence imaging complement conventional, radiological imaging-based navigation to guide the dissection of soft-tissue phantom tumors. METHODS: Using a human tissue-simulating model, we created tumor phantoms with physiologically accurate optical density and contrast concentrations. Phantoms were dissected using all possible combinations of computed tomography (CT), magnetic resonance, and fluorescence imaging; controls were included. The data were margin accuracy, margin status, tumor spatial alignment, and dissection duration. RESULTS: Margin accuracy was higher for combined navigation modalities compared to individual navigation modalities, and accuracy was highest with combined CT and fluorescence navigation (p = 0.045). Margin status improved with combined CT and fluorescence imaging. CONCLUSIONS: At present, imaging-based navigation has limited application in guiding soft-tissue tumor operations due to its inability to compensate for positional changes during surgery. This study indicates that fluorescence guidance enhances the accuracy of imaging-based navigation and may be best viewed as a synergistic technology, rather than a competing one.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。