Characterization of zebrafish rod and cone photoresponses.

阅读:4
作者:Sato Shinya, Kefalov Vladimir
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。