XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of Arabidopsis.

阅读:4
作者:Ellison Cory T, Vandenbussche Filip, Van Der Straeten Dominique, Harmer Stacey L
The phytohormone ethylene differentially regulates plant architecture and growth in both a light- and nutrient-dependent fashion. The modulation of plant development by ethylene in response to both external and internal signals can also generate tissue-specific differential responses. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT) is involved in blue light-dependent ethylene responses in the aerial tissues of Arabidopsis (Arabidopsis thaliana) seedlings. XCT was first identified as a circadian clock mutant with a short free-running period. The xct mutation also causes sugar-specific hypocotyl growth defects, in which mutants are short in blue light when grown on a sucrose-rich medium but tall when grown on sucrose-deficient medium. Our data suggest that the hypocotyl defects in blue light are not directly caused by defects in clock or light signaling but rather by enhanced ethylene responses. In blue light, xct mutants have a more active ethylene response pathway and exhibit growth phenotypes similar to the constitutive ethylene signaling mutant constitutive triple response1 (ctr1). xct mutants also have reduced ethylene emission, analogous to plants that have lost CTR1 function. Genetic analysis suggests that XCT negatively regulates ethylene responses downstream of ETHYLENE-INSENSITIVE3 in aerial tissues. However, XCT is not required for all ethylene-mediated processes, such as the inhibition of root growth. Thus, XCT acts downstream of a major transcriptional regulator in an organ-specific manner, playing an environment-dependent role in the regulation of plant growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。