Triblock Glycopolymers with Two 10-mer Blocks of Activating Sugars Enhance the Activation of Acrosomal Exocytosis in Mouse Sperm.

阅读:3
作者:Mendez Luz C, Kennedy Mitchell, Bhatia Surita R, Sampson Nicole S
Carbohydrate recognition is imperative for the induction of sperm acrosomal exocytosis (AE), an essential phenomenon in mammalian fertilization. In mouse sperm, polynorbornene 100-mers displaying fucose or mannose moieties were effective at inducing AE. In contrast, glycopolymers exhibiting glucose sugars resulted in no AE activation. To further elucidate the role of ligand density on the activation of AE in mouse sperm, a triple-stain flow cytometry assay was employed to determine the efficacy of polynorbornene block copolymers with barbell-like sequences as initiators of AE. Triblock (ABA or ABC) copolymers were synthesized by ring-opening metathesis polymerization (ROMP) with one or two activating sugars, mannose or fucose, and one nonactivating sugar, glucose. The active ligand fractions in the polymers varied from 10, 20, or 40%. Simultaneously, random copolymers comprising 20% activating ligands were prepared to confirm the importance of ligand positionality in AE activation in mouse sperm. Polynorbornene 100-mers possessing two 10-mer blocks of activating sugars were the most effective copolymers at inducing AE with levels of AE comparable to their homopolymer counterparts and more effective than their random analogues. Small-angle X-ray scattering (SAXS) was then performed to verify that there were no differences in the conformations of the glycopolymers contributing to their varying AE activity. SAXS data analysis confirmed that all of the glycopolymers assumed semiflexible cylindrical structures with similar radii and Kuhn lengths. These findings suggest that the overall ligand density of the sugar moieties in the polymer is less important than the positionality of short blocks of high-density ligands for AE activation in mouse sperm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。