Multi-shank 1024 channels active SiNAPS probe for large multi-regional topographical electrophysiological mapping of neural dynamics.

阅读:3
作者:Angotzi Gian Nicola, Vöröslakos Mihály, Perentos Nikolas, Ribeiro Joao Filipe, Vincenzi Matteo, Boi Fabio, Lecomte Aziliz, Orban Gabor, Genewsky Andreas, Schwesig Gerrit, Aykan Deren, Buzsáki György, Sirota Anton, Berdondini Luca
Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, we demonstrate the first CMOS neural probe for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm(2). By taking advantage of the modularity of our SiNAPS technology, we realized an eight shanks probe with 1024 electrode channels arranged on each shank in regular arrays with an electrode pitch <30 μm. Low-noise recordings from all electrodes at 20 kHz/channel demonstrate a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit recording across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。