Multi-shank 1024 channels active SiNAPS probe for large multi-regional topographical electrophysiological mapping of neural dynamics.

阅读:10
作者:Angotzi Gian Nicola, Vöröslakos Mihály, Perentos Nikolas, Ribeiro Joao Filipe, Vincenzi Matteo, Boi Fabio, Lecomte Aziliz, Orban Gabor, Genewsky Andreas, Schwesig Gerrit, Aykan Deren, Buzsáki György, Sirota Anton, Berdondini Luca
Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, we demonstrate the first CMOS neural probe for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm(2). By taking advantage of the modularity of our SiNAPS technology, we realized an eight shanks probe with 1024 electrode channels arranged on each shank in regular arrays with an electrode pitch <30 μm. Low-noise recordings from all electrodes at 20 kHz/channel demonstrate a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit recording across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。