The aim of this study was to investigate how the oxidation state of copper (Cu(I) vs Cu(II)), the nature of the interface (solid/aqueous vs solid/air), positional isomerism, and incubation time affect the functionalization of the surface of copper oxide nanostructures by [(butylamino)(pyridine)methyl]phenylphosphinic acid (PyPA). For this purpose, 2-, 3-, and 4-isomers of PyPA and the nanostructures were synthesized. The nanostructure were characterized by UV-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy (RS), and X-ray diffraction (XRD) analysis, which proved the formation of spherical Cu(2)O nanoparticles (Cu(2)ONPs; 1500-600 nm) and leaf-like CuO nanostructures (CuONSs; 80-180/400-700 nm, width/length). PyPA isomers were deposited on the surface of NSs, and adsorption was investigated by surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). The changes of adsorption on the surface of copper oxide NSs caused by the above-mentioned factors were described and the enhancement factor on this substrate was calculated.
SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles.
阅读:10
作者:Proniewicz Edyta, Olszewski Tomasz K
| 期刊: | Journal of Medicinal Chemistry | 影响因子: | 6.800 |
| 时间: | 2022 | 起止号: | 2022 Mar 10; 65(5):4387-4400 |
| doi: | 10.1021/acs.jmedchem.2c00031 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
