Characterization and genome analysis of the novel virulent Burkholderia phage Bm1, which is active against pan-drug-resistant Burkholderia multivorans.

阅读:4
作者:Rubalskii Evgenii, Sedlacek Ludwig, Hegermann Jan, Knegendorf Leonard, Salmoukas Christina, Mueller Carsten, Schwerk Nicolaus, Schlüter Dirk, Ruhparwar Arjang, Kuehn Christian, Ruemke Stefan
The escalating challenges of antibiotic resistance in bacterial pathogens have necessitated the exploration of alternative therapeutic strategies. Among these, bacteriophage therapy has regained attention as a promising approach to combat multidrug-resistant bacteria. Bacteriophages are viruses that infect and lyse specific bacterial strains, making them attractive candidates for targeted antimicrobial treatment. Burkholderia multivorans, a Gram-negative bacterium, is known to cause opportunistic infections, particularly in individuals with a compromised immune system or with cystic fibrosis. The prevalence of antibiotic-resistant Burkholderia strains has raised concerns about treatment options. In this study, we characterized the Burkholderia phage Bm1, a virulent bacteriophage isolated from an environmental source. Electron microscopy revealed that Bm1 phage particles have myovirus morphology, with an icosahedral head of 72 nm in diameter and a contractile tail of 100 nm in length and 18 nm in width. The genome of phage Bm1 consists of a double-stranded DNA of 67,539 bp with a terminal repeat region at each end. Comparative analysis indicated that the closest relative of phage Bm1 is Burkholderia phage BCSR129, with a calculated VIRIDIC identity of 57.7%. The apparent absence of an integrase gene suggests that the Burkholderia phage Bm1 has a strictly lytic life cycle.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。