BACKGROUND: Lysophosphatidic acid receptor 1 (LPA(1)) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA(1) might also be a therapeutic strategy for cerebral ischemia because LPA(1) triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). METHODS: To address the role of LPA(1) in the ischemic brain damage, we used AM095, a selective LPA(1) antagonist, as a pharmacological tool and lentivirus bearing a specific LPA(1) shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA(1) in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. RESULTS: AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1âday after tMCAO, which was reaffirmed by LPA(1) shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3âdays after tMCAO. LPA(1) antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA(1) antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA(1)-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA(1) in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA(1) activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA(1) influenced PI3K/Akt and MAPKs; suppressing LPA(1) activity decreased MAPK activation and increased Akt phosphorylation. CONCLUSION: This study demonstrates that LPA(1) is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage.
Lysophosphatidic acid receptor 1 (LPA(1)) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia.
阅读:4
作者:Gaire Bhakta Prasad, Sapkota Arjun, Song Mi-Ryoung, Choi Ji Woong
| 期刊: | Journal of Neuroinflammation | 影响因子: | 10.100 |
| 时间: | 2019 | 起止号: | 2019 Aug 20; 16(1):170 |
| doi: | 10.1186/s12974-019-1555-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
