BACKGROUND: Traditional sandwich enzyme-linked immunosorbent assay (ELISA) using polyclonal and monoclonal antibodies as reagents presents several drawbacks, including limited amounts, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies can be easily expressed with different systems and fused with several tags in their tertiary structure by recombinant technology, thus offering an effective detection method for diagnostic purposes. Recently, the fenobody (ferritin-fused nanobody) and RANbody (nanobody-fused reporter) have been designed and derived from the nanobody for developing the diagnostic immunoassays. However, there was no report about developing the sandwich ELISA using the fenobody and RANbody as pairing reagents. RESULTS: A platform for developing a sandwich ELISA utilizing fenobody as the capture antibody and RANbody as the detection antibody was firstly designed in the study. Newcastle disease virus (NDV) was selected as the antigen, from which 13 NDV-specific nanobodies were screened from an immunized Bactrian camel. Then, 5 nanobodies were selected to produce fenobodies and RANbodies. The best pairing of fenobodies (NDV-fenobody-4, 800Â ng/well) and RANbodies (NDV-RANbody-49, 1:10) was determined to develop the sandwich ELISA for detecting NDV. The detection limits of the assay were determined to be 2(2) of hemagglutination (HA) titers and 10Â ng of purified NDV particles. Compared with two commercial assays, the developed assay shows higher sensitivity and specificity. Meanwhile, it exhibits 98.7% agreement with the HA test and can detect the reference NDV strains belonging to Class II but not Class I. CONCLUSIONS: In the presented study, the 13 anti-NDV nanobodies binding the NDV particles were first produced. Then, for the first time, the sandwich ELISA to detect the NDV in the different samples has been developed using the fenobody and RANbody as reagents derived from the nanobodies. Considering the rapidly increasing generation of nanobodies, the platform can reduce the cost of production for the sandwich ELISA and be universally used to develop assays for detecting other antigens.
Fenobody and RANbody-based sandwich enzyme-linked immunosorbent assay to detect Newcastle disease virus.
阅读:6
作者:Ji Pinpin, Zhu Jiahong, Li Xiaoxuan, Fan Wenqi, Liu Qianqian, Wang Kun, Zhao Jiakai, Sun Yani, Liu Baoyuan, Zhou En-Min, Zhao Qin
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2020 | 起止号: | 2020 Mar 14; 18(1):44 |
| doi: | 10.1186/s12951-020-00598-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
