BACKGROUND: Clustering the metagenomic contigs into potential genomes is a key step to investigate the functional roles of microbial populations. Existing algorithms have achieved considerable success with simulated or real sequencing datasets. However, accurately classifying contigs from complex metagenomes is still a challenge. RESULTS: We introduced a novel clustering algorithm, MetaDecoder, which can classify metagenomic contigs based on the frequencies of k-mers and coverages. MetaDecoder was built as a two-layer model with the first layer being a GPU-based modified Dirichlet process Gaussian mixture model (DPGMM), which controls the weight of each DPGMM cluster to avoid over-segmentation by dynamically dissolving contigs in small clusters and reassigning them to the remaining clusters. The second layer comprises a semi-supervised k-mer frequency probabilistic model and a modified Gaussian mixture model for modeling the coverage based on single copy marker genes. Benchmarks on simulated and real-world datasets demonstrated that MetaDecoder can be served as a promising approach for effectively clustering metagenomic contigs. CONCLUSIONS: In conclusion, we developed the GPU-based MetaDecoder for effectively clustering metagenomic contigs and reconstructing microbial communities from microbial data. Applying MetaDecoder on both simulated and real-world datasets demonstrated that it could generate more complete clusters with lower contamination. Using MetaDecoder, we identified novel high-quality genomes and expanded the existing catalog of bacterial genomes. Video Abstract.
MetaDecoder: a novel method for clustering metagenomic contigs.
阅读:5
作者:Liu Cong-Cong, Dong Shan-Shan, Chen Jia-Bin, Wang Chen, Ning Pan, Guo Yan, Yang Tie-Lin
| 期刊: | Microbiome | 影响因子: | 12.700 |
| 时间: | 2022 | 起止号: | 2022 Mar 10; 10(1):46 |
| doi: | 10.1186/s40168-022-01237-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
