In this paper, we present an algorithm for clustering multidimensional data, which we named TreeKDE. It is based on a tree structure decision associated with the optimization of the one-dimensional kernel density estimator function constructed from the orthogonal projections of the data on the coordinate axes. Among the main features of the proposed algorithm, we highlight the automatic determination of the number of clusters and their insertion in a rectangular region. Comparative numerical experiments are presented to illustrate the performance of the proposed algorithm and the results indicate that the TreeKDE is efficient and competitive when compared to other algorithms from the literature. Features such as simplicity and efficiency make the proposed algorithm an attractive and promising research field, which can be used as a basis for its improvement, and also for the development of new clustering algorithms based on the association between decision tree and kernel density estimator.
TreeKDE: clustering multivariate data based on decision tree and using one-dimensional kernel density estimation.
阅读:2
作者:Scaldelai D, Matioli L C, Santos S R
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2022 Dec 22; 51(4):740-758 |
| doi: | 10.1080/02664763.2022.2159339 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
