Host defense peptides, also known as antimicrobial peptides, are key elements of innate host defense. One host defense peptide with well-characterized antimicrobial activity is the human cathelicidin, LL-37. LL-37 has been shown to be upregulated at sites of infection and inflammation and is regarded as one of the primary innate defense molecules against bacterial and viral infection. Human exposure to combustion-derived or engineered nanoparticles is of increasing concern, and the implications of nanomaterial exposure on the human immune response is poorly understood. However, it is widely acknowledged that nanoparticles can interact strongly with several immune proteins of biological significance, with these interactions resulting in structural and functional changes of the proteins involved. This study investigated whether the potent antibacterial and antiviral functions of LL-37 were inhibited by exposure to, and interaction with, carbon nanoparticles, together with characterizing the nature of the interaction. LL-37 was exposed to carbon black nanoparticles in vitro, and the antibacterial and antiviral functions of the peptide were subsequently assessed. We demonstrate a substantial loss of antimicrobial function when the peptide was exposed to low concentrations of nanomaterials, and we further show that the nanomaterial-peptide interaction resulted in a significant change in the structure of the peptide. The human health implications of these findings are significant, as, to our knowledge, this is the first evidence that nanoparticles can alter host defense peptide structure and function, indicating a new role for nanoparticle exposure in increased disease susceptibility.
Carbon Nanoparticles Inhibit the Antimicrobial Activities of the Human Cathelicidin LL-37 through Structural Alteration.
阅读:3
作者:Findlay Fern, Pohl Jan, Svoboda Pavel, Shakamuri Priyanka, McLean Kevin, Inglis Neil F, Proudfoot Lorna, Barlow Peter G
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2017 | 起止号: | 2017 Oct 1; 199(7):2483-2490 |
| doi: | 10.4049/jimmunol.1700706 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
