A key challenge in studying organisms and diseases is to detect rare molecular programs and rare cell populations (RCPs) that drive development, differentiation, and transformation. Molecular features such as genes and proteins defining RCPs are often unknown and difficult to detect from unenriched single-cell data, using conventional dimensionality reduction and clustering-based approaches. Here, we propose an unsupervised approach, SCMER (Single-Cell Manifold presERving feature selection), which selects a compact set of molecular features with definitive meanings that preserve the manifold of the data. We applied SCMER in the context of hematopoiesis, lymphogenesis, tumorigenesis, and drug resistance and response. We found that SCMER can identify non-redundant features that sensitively delineate both common cell lineages and rare cellular states. SCMER can be used for discovering molecular features in a high dimensional dataset, designing targeted, cost-effective assays for clinical applications, and facilitating multi-modality integration.
Single-cell manifold-preserving feature selection for detecting rare cell populations.
阅读:3
作者:Liang Shaoheng, Mohanty Vakul, Dou Jinzhuang, Miao Qi, Huang Yuefan, MüftüoÄlu Muharrem, Ding Li, Peng Weiyi, Chen Ken
| 期刊: | Nature Computational Science | 影响因子: | 18.300 |
| 时间: | 2021 | 起止号: | 2021 May;1(5):374-384 |
| doi: | 10.1038/s43588-021-00070-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
