Two-stage optimal designs based on exact variance for a single-arm trial with survival endpoints.

阅读:5
作者:Shan, Guogen
Sample size calculation based on normal approximations is often associated with the loss of statistical power for a single-arm trial with a time-to-event endpoint. Recently, Wu (2015) derived the exact variance for the one-sample log-rank test under the alternative and showed that a single-arm one-stage study based on exact variance often has power above the nominal level while the type I error rate is controlled. We extend this approach to a single-arm two-stage design by using exact variances of the one-sample log-rank test for the first stage and the two stages combined. The empirical power of the proposed two-stage optimal designs is often not guaranteed under a two-stage design setting, which could be due to the asymptotic bi-variate normal distribution used to estimate the joint distribution of the test statistics. We adjust the nominal power level in the design search to guarantee the simulated power of the identified optimal design being above the nominal level. The sample size and the study time savings of the proposed two-stage designs are substantial as compared to the one-stage design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。