Engram cell connectivity as a mechanism for information encoding and memory function

印迹细胞连接作为信息编码和记忆功能的机制

阅读:5
作者:Clara Ortega-de San Luis, Maurizio Pezzoli, Esteban Urrieta, Tomás J Ryan

Abstract

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, that allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal vCA1 region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components respectively. Finally, we identify a synaptic plasticity mechanism mediated by PSD-95, which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。