Preparation of a Biomedical Scaffold from High-Molecular-Weight Poly-DL-Lactic Acid Synthesized via Ring-Opening Polymerization.

阅读:4
作者:Bazan-Panana Geraldine Denise, Torres-Calla Manuel J, Carranza-Oropeza María Verónica
In this study, poly-DL-lactic acid (PDLLA) was synthesized via ring-opening polymerization (ROP) to develop a biomedical scaffold for tissue engineering. A rotary evaporator with a two-stage vacuum pump under an inert atmosphere and constant stirring was used. A factorial design with three factors (oligomerization time, ROP time, and catalyst concentration) at two levels was applied. Polymers were characterized by FTIR, capillary viscometry, (1)H-NMR, DSC, and TGA. The kinetic study revealed a first-order model, indicating that the polymerization rate depends linearly on monomer concentration. The activation energy (70.5 kJ/mol) suggests a moderate energy requirement, consistent with ring-opening polymerization, while the high pre-exponential factor (6.93 × 10(6) min(-1)) reflects a significant frequency of molecular collisions. The scaffold was fabricated via extrusion and 3D printing, and its morphology, porosity, mechanical properties, and contact angle were studied. The highest molecular weight PDLLA was obtained with 6 h of oligomerization, 4 h of ROP, and 1% catalyst concentration. The samples exhibited thermal stability below 40 °C, while the scaffold reached 71.6% porosity, an 85.97° contact angle, and a compressive strength of 4.24 MPa with an elastic modulus of 51.7 MPa. These findings demonstrate the scaffold's potential for biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。