This manuscript presents NJA-CFS, a Python-based comprehensive toolkit for crystal field/ligand field calculations. NJA-CFS is designed to perform simulations of electronic structure properties, including the magnetic ones, for transition metals and lanthanoid complexes, giving access to several CF/LF parametrization schemes, from point-charge model and AOM to AILFT parameters, putting great effort in the implementation of routines for CF parameters manipulation and rotation. NJA-CFS was designed to meet the needs of both first-time users of crystal field theory and those who require a high degree of flexibility in the choice of crystal field parameters formalisms. In this manuscript, we present the theoretical foundations of the program routines and the comparison of NJA-CFS calculation results either to experimental data or ab initio computations, proving the advantages that access to multiple CFPs formalism can bring in. We also present intuitive applications of the NJA-CFS routines to didactically valuable examples, like the projection of CF/LF splitting on real d- and f- orbitals and the calculations of Tanabe-Sugano diagrams for arbitrary symmetries and with the inclusion of spin-orbit coupling.
Not Just Another Crystal Field Software.
阅读:7
作者:Fiorucci Letizia, Ravera Enrico
| 期刊: | Journal of Computational Chemistry | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 5; 46(6):e70063 |
| doi: | 10.1002/jcc.70063 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
