Currently, image recognition based on deep neural networks has become the mainstream direction of research; therefore, significant progress has been made in its application in the field of tea detection. Many deep models exhibit high recognition rates in tea leaves detection. However, deploying these models directly on tea-picking equipment in natural environments is impractical; the extremely high parameters and computational complexity of these models make it challenging to perform real-time tea leaves detection. Meanwhile, lightweight models struggle to achieve competitive detection accuracy; therefore, this paper addresses the issue of computational resource constraints in remote mountain areas and proposes Reconstructed Feature and Dual Distillation (RFDD) to enhance the detection capability of lightweight models for tea leaves. In our method, the Reconstructed Feature selectively masks the feature of the student model based on the spatial attention map of the teacher model; it utilizes a generation block to force the student model to generate the teacher's full feature. The Dual Distillation comprises Decoupled Distillation and Global Distillation. Decoupled Distillation divides the reconstructed feature into foreground and background features based on the Ground-Truth. This compels the student model to allocate different attention to foreground and background, focusing on their critical pixels and channels. However, Decoupled Distillation leads to the loss of relation knowledge between foreground and background pixels. Therefore, we further perform Global Distillation to extract this lost knowledge. Since RFDD only requires loss calculation on feature map, it can be easily applied to various detectors. We conducted experiments on detectors with different frameworks, using a tea dataset collected at the Huangshan Houkui Tea Plantation. The experimental results indicate that, under the guidance of RFDD, the student detectors have achieved performance improvements to varying degrees. For instance, a one-stage detector like RetinaNet (ResNet-50) experienced a 3.14% increase in Average Precision (AP) after RFDD guidance. Similarly, a two-stage model like Faster RCNN (ResNet-50) obtained a 3.53% improvement in AP. This offers promising prospects for lightweight models to efficiently perform real-time tea leaves detection tasks.
Learning lightweight tea detector with reconstructed feature and dual distillation.
阅读:3
作者:Zheng Zhe, Zuo Guanpeng, Zhang Wu, Zhang Chenlu, Zhang Jing, Rao Yuan, Jiang Zhaohui
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Oct 10; 14(1):23669 |
| doi: | 10.1038/s41598-024-73674-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
