The green synthesis of metal nanoparticles (NPs) has garnered significant attention due to its simplicity, cost-effectiveness, and environmental sustainability. Gold NPs (AuNPs) and silver NPs (AgNPs) are widely employed across various industries, agriculture, and medicine owing to their unique physicochemical properties. This study explores the feasibility of synthesizing metal NPs through green methods using ethanolic (70%) extracts from Artemisia annua hairy roots. These extracts were found to contain reducing agents, primarily phenolic compounds, as identified by HPLC and MALDI-MS analyses. The phenolic compounds included hydroxybenzoic acids (e.g. p-coumaric and gallic acids) and hydroxycinnamic acids (e.g. caffeic acid and its derivatives such as chlorogenic, dicaffeoylquinic, and rosmarinic acids). The synthesis and structural characteristics of AuNPs and AgNPs were systematically compared. AgNPs formed a stable colloidal solution over extended periods, while AuNPs exhibited instability due to significant NP aggregation and precipitation. Furthermore, the photocatalytic activities of these NPs in the degradation of Methylene Blue were evaluated. AuNPs demonstrated substantial photocatalytic activity, whereas AgNPs exhibited negligible catalytic effects. This study highlights the potential and limitations of A. annua hairy root extracts in the biosynthesis of AuNPs and AgNPs, providing insights into their structural and functional differences.
Comparison of silver and gold nanoparticles green synthesis by Artemisia annua hairy root extracts.
阅读:7
作者:Bohdanovych Taisa, Kuzema Pavlo, Anishchenko Viktor, Duplij Volodymyr, Kharchuk Maksym, Lyzhniuk Viktoriia, Shakhovsky Anatolij, Matvieieva Nadiia
| 期刊: | Biology Open | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 15; 14(3):bio061739 |
| doi: | 10.1242/bio.061739 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
