Improving the bacillomycin L production in Bacillus amyloliquefaciens by atmospheric and room-temperature plasma combined with Box-Behnken design.

阅读:7
作者:Zhang Andong, Yang Bin, Ma Yudong, Li Ruolin, Zhou Zhiwei, Luo Chen, Zhang Yiyang, Zhang Yuhan, Dan Ya, Sun Qun
Bacillomycin L, a cyclic lipopeptide derived from Bacillus amyloliquefaciens, has great potential for developing biochemical phytofungicides. In this study, a mutant M86 with high anti-Botrytis cinerea activity was obtained by atmospheric and room-temperature plasma (ARTP) mutagenesis from the original strain 1841, with bacillomycin L yield increasing from 244.22 to 415.89 mg/L. Mass spectrometry analysis identified that the main active compounds were C14-, C15-, and C16-bacillomycin L. Re-sequencing M86 showed that ARTP mutagenesis resulted in the effective mutations in sigma factors and ABC transporter proteins. Transcriptome sequencing further revealed the significant up-regulation of the bmyDABC and ytrBCC2DEF gene cluster involved in bacillomycin L synthesis and transporter, respectively, in M86. Bacillomycin L yield was further boosted to 676.47 mg/L after optimizing the fermentation medium by adjusting glycine, serine, and K(2)HPO(4) concentrations. Bacillomycin L exhibited broad inhibitory activity against 17 fungi and nine bacterial species. This investigation provides a foundation for bacillomycin L production and application.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。