A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine.

阅读:3
作者:Peng Cheng, Wu Jiaqi, Tang Zhaohui, Yuan Xinpan, Li Changyun
The time-series data generated by turbofan engines has a great degree of complexity and dynamics. At present, recurrent neural networks are commonly used to model and forecast the remaining useful life (RUL). The relationship of the sample data is not taken into account, and there are issues such as gradient explosion. In view of this, a spatio-temporal attention model is proposed, which comprehensively relates to the temporal association of data features and the hidden state of data features in space. At the same time, position coding is performed on the temporal relationship, avoiding the use of recurrent neural networks. Experimental results show that by combining the two dimensions, the predictive performance of the model is significantly improved. Compared with different methods on the four data sets of the commercial modular aerospace propulsion system simulation (C-MAPSS), the stability and prediction accuracy of the spatio-temporal attention model are better than that of alternative methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。