Breast cancer is recognized as a prominent cause of cancer-related mortality among women globally, emphasizing the critical need for early diagnosis resulting improvement in survival rates. Current breast cancer diagnostic procedures depend on manual assessments of pathological images by medical professionals. However, in remote or underserved regions, the scarcity of expert healthcare resources often compromised the diagnostic accuracy. Machine learning holds great promise for early detection, yet existing breast cancer screening algorithms are frequently characterized by significant computational demands, rendering them unsuitable for deployment on low-processing-power mobile devices. In this paper, a real-time automated system "Auto-BCS" is introduced that significantly enhances the efficiency of early breast cancer screening. The system is structured into three distinct phases. In the initial phase, images undergo a pre-processing stage aimed at noise reduction. Subsequently, feature extraction is carried out using a lightweight and optimized deep learning model followed by extreme gradient boosting classifier, strategically employed to optimize the overall performance and prevent overfitting in the deep learning model. The system's performance is gauged through essential metrics, including accuracy, precision, recall, F1 score, and inference time. Comparative evaluations against state-of-the-art algorithms affirm that Auto-BCS outperforms existing models, excelling in both efficiency and processing speed. Computational efficiency is prioritized by Auto-BCS, making it particularly adaptable to low-processing-power mobile devices. Comparative assessments confirm the superior performance of Auto-BCS, signifying its potential to advance breast cancer screening technology.
Auto-BCS: A Hybrid System for Real-Time Breast Cancer Screening from Pathological Images.
阅读:11
作者:Ekta, Bhatia Vandana
| 期刊: | J Imaging Inform Med | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Aug;37(4):1752-1766 |
| doi: | 10.1007/s10278-024-01056-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
